zentrationen vorgenommen, deren Suszeptibilitäten von NETTLETON & SUDGEN³⁷) sehr genau bestimmt worden sind. Alle Messungen wurden bei sechs Feldstärken ausgeführt, was durch Variation des Stromes von 1,50 A bis 4,00 A in Schritten von 0,5 A erreicht wurde. Die Gewichtsänderungen bei Einschalten des Feldes betrugen in unseren Lösungen 1 bis 25 mg. Die Standardabweichung in χ'_{MP} beträgt $5 \cdot 10^{-6}$ für [Cu]₁ = 0,1, unabhängig von χ'_{MP} .

Lösungen der Tab. 3: Man hat elementares Brom in die Lösungen des CuBr gebracht, indem ein Stickstoffstrom über elementares Brom und hernach in die Acetonitrillösung geleitet wurde. Diese liess man direkt durch einen Teflonhahn in die eine Kammer des Doppelröhrchens abfliessen, ohne dass sie mit dem Verbindungsschliff in Berührung kam. Die Zusammensetzung wurde erst nach der Wägung ermittelt. Zur Bestimmung des Kupfers dampfte man ein und nahm in überschüssigem wässerigen Ammoniak auf, liess Kupfer durch Luft zu Cu¹¹ oxydieren und titrierte komplexometrisch. Zur Bestimmung der Summe von Brom und Bromid hat man bei Bromüberschuss die Probe in Wasser mit suspendiertem Zinkpulver eingetragen, von Zink und Kupfer abfiltriert und im Filtrat Bromid potentiometrisch titriert.

Wir danken den Herren A. SCHADEGG und U. WITTORF für experimentelle Mitarbeit bei den spektrophotometrischen Messungen. – Für diese Untersuchungen standen uns Mittel aus der Schweizerischen Volkswirtschaftsstiftung und dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt Nr. 1940) zur Verfügung. – Herrn Prof. Dr. G. Schwarzenbach danken wir für sein Interesse an dieser Arbeit.

SUMMARY

It is deduced from absorption spectra and susceptibilities of acetonitrile solutions containing Cu^{II} and bromide, that the lower complexes $CuBr^+$ and $CuBr_2$ are unstable with respect to Cu^{I} , elementary bromine and $CuBr_3^-$. The complex $CuBr_3^-$ has a low tendency to add another bromide to form $CuBr_4^{2-}$. A number of spectral data show that quite generally in organic solvents such as acetonitrile, ethyl acetate, acetic acid, nitromethane and dimethylformamide the trihalogeno-complex CuX_3^- can exist in the presence of CuX^+ , whereas CuX_2 is unstable with respect to the mono- and the tri-complex.

Zürich, Laboratorium für Anorganische Chemie der Eidg. Technischen Hochschule

³⁷) H. R. NETTLETON & S. SUDGEN, Proc. Roy. Soc. (London) A 173, 313 (1939).

212. Trioxalatokobaltat(III)-Ion in wässeriger Lösung: Thermischer Zerfall und Elektronaustausch mit Dioxalatokobaltat(II)-Ion¹)

von W. Schneider

(7. VI. 63)

Mit dem Solvatationszustand des Ions CoOx_3^{3-} ($\text{Ox}^{2-} = \text{C}_2\text{O}_4^{2-}$) in wässeriger Lösung sind unmittelbar zwei Prozesse verbunden, nämlich der Konfigurationswechsel ($d \rightleftharpoons l$) und die thermische Zersetzung nach Bruttogleichung (1):

$$2 \operatorname{CoOx}_{3}^{3-} \longrightarrow 2 \operatorname{Co}^{\mathrm{II}} + 5 \operatorname{Ox}^{2-} + 2 \operatorname{CO}_{2}. \tag{1}$$

¹) W. SCHNEIDER, Habilitationsschrift, ETH Zürich 1963.

Bei Anwesenheit von Oxalatokomplexen des Co^{II} erfolgt zudem der bisher in zwei Arbeiten beschriebene²)³) Elektronaustausch (2):

$$\operatorname{CoOx}_3^{3-} + \operatorname{*CoOx}_n^{2-2n} \longrightarrow \operatorname{*CoOx}_3^{3-} + \operatorname{CoOx}_n^{2-2n},$$
 (2)

welcher z. B. mit dem Radioisotop ⁶⁰Co verfolgt werden kann. Die Racemisierung wurde von BUSHRA & JOHNSON⁴) eingehend untersucht, und der thermische Zerfall ist in neuerer Zeit mehrfach studiert worden, so von COPESTAKE & URI⁵) und kürzlich von MURGULESCU & ONCESCU⁶). Die wesentlichsten Resultate der Untersuchungen anderer Autoren⁷) seien unsern eigenen Resultaten und ihrer Interpretation vorangestellt. Die Racemisierung wird von überschüssigem Oxalat in der Lösung nicht beeinflusst⁸), was auf der erstmals von LONG⁹) und neuerdings von GRAZIANO & HARRIS¹⁰) über Ligandaustauschversuche nachgewiesenen Robustheit des COOX³₃ – beruht. Als Primärreaktion der Isomerisierung hat erstmals WERNER¹¹) die Öffnung eines Chelat-5-Ringes betrachtet und für den Unterschied in der Racemisierungsgeschwindigkeit von $COOX^3_3$ – und $Co(en)^3_3^+$ verantwortlich gemacht. In wässeriger Lösung muss man neuerdings die Primärreaktion als Gleichgewicht (3) formulieren:

$$[\operatorname{CoOx}_3^{3-}]aq. \qquad \longleftarrow \qquad [\operatorname{CoOx}_3(\operatorname{H}_2O)]^{3-}. \tag{3}$$

$$I \qquad \qquad II$$

Der thermische Zerfall zeigt im neutralen und sauren Bereich eine Abhängigkeit erster Ordnung, und die Säureeinwirkung bedingt eine lineare Zunahme der Bruttozerfallskonstanten mit der Konzentration an Hydronium-Ionen⁵)⁶). Als Zwischenprodukt des Zerfalls wurde allgemein das Radikal-Ion Ox⁻ (= $C_2O_4^-$) vorgeschlagen, und der Elektronaustausch (2) wurde von ADAMSON³) auf den thermischen Zerfall zurückgeführt, nämlich auf die Rückreaktion in (4).

$$\operatorname{CoOx}_{3}^{3-} \xrightarrow{k_{1}^{\prime}} \operatorname{CoOx}_{2}^{2} + \operatorname{Ox}_{2}^{-}$$
(4)

$$CoOx_3^{3-} + Ox^{-} \qquad \xrightarrow{k'_3} \qquad Co^{II} + 3 Ox^{2-} + 2 CO_2$$
 (5)

 k'_1, k'_2, k'_3 : Geschwindigkeitskonstanten

Die beobachtete erste Ordnung im Zerfallsgesetz würde demnach der Voraussetzung $k'_3 \gg k'_2$ entsprechen. Wir werden im folgenden einen Zusammenhang von

- 3) A. W. ADAMSON, H. OGATA, J. GROSSMAN & R. NEWBURY, J. inorg. nucl. Chemistry 6, 319 (1958).
- 4) E. BUSHRA & C. H. JOHNSON, J. chem. Soc. 1939, 1937.
- ⁵) T. B. Copestake & N. Uri, Proc. Roy. Soc. A 228, 252 (1955).
- 6) J. G. MURGULESCU & T. ONCESCU, Z. physikal. Chem. 214, 238 (1960).
- 7) Zit. 2), 3), 4) und 5) werden in einer kürzlich erschienenen Übersicht über die Chemie der Oxalatkomplexe besprochen: K. V. KRISHNAMURTI & G. HARRIS, Chem. Reviews 61, 213 (1961).
- ⁸) N. W. D. BEESE & C. H. JOHNSON, Trans. Farad. Soc. 31, 1632 (1935).
- 9) F. A. LONG, J. Amer. chcm. Soc. 63, 1353 (1941).
- ¹⁰) F. D. GRAZIANO & G. M. HARRIS, J. physic. Chemistry 63, 330 (1959).
- ¹¹) A. WERNER, Ber. deutsch. chem. Ges. 45, 121 (1912).

²) F. S. DAINTON, G. S. LAURENCE, W. SCHNEIDER, D. R. STRANKS & M. S. VAIDYA, in «Radioisotopes in Scientific Research», Ed. R. C. EXTERMAN, Pergamon, London 1958, S. 305.

Zerfall und Elektronaustausch bestätigen und zudem begründen, dass erstens alle drei Prozesse durch das Gleichgewicht (3) eingeleitet werden und zweitens als Redoxprozesse zu betrachten sind: Die Isomerisierung als reversible, der Zerfall als irreversible Oxydation des Liganden durch das Zentral-Ion Co^{III} und der Elektronaustausch als reversibler Redoxprozess zwischen Co^{III} und Co^{II}. Die Existenz einer offenen Form II (Fig. 1) ist auch postuliert worden²), als eine erste Untersuchung des Elektronaustausches (2) ergab, dass der Komplex $CoOx_2^{2-}$ kinetisch hervortritt. Kürzlich hat MASON¹²) den Zirkulardichroismus von $CoOx_3^{3-}$ in wässeriger Lösung untersucht und den direkten Beweis für das Gleichgewicht (3) erbracht, indem die experimentellen Daten nur mit der approximativen Symmetrie C_2 eines

Fig. 1. Offene Form der Oxalatokomplexe von Co¹¹¹ und Rh¹¹¹ in wässeriger Lösung, bzw. im Festkörper K₃RhOx₃, 4,5H₂O¹³)

Teils der Komplex-Ionen zu erklären sind. Die offene Form liegt bei der Hälfte aller Ionen des analogen Rhodiumkomplexes nach Kernresonanzstudien im festen Kaliumsalz vor¹³).

Wir fassen unsere experimentellen Befunde und ihre Interpretation im folgenden postulierten Reaktionsschema zusammen:

$$\begin{bmatrix} \text{CoOx}_3^{3-} \end{bmatrix} \text{aq.} \qquad \underbrace{\stackrel{p_+}{\longleftarrow}}_{p_-} \qquad \begin{bmatrix} \text{CoOx}_3(\text{H}_2\text{O}) \end{bmatrix}^{3-} \qquad \underbrace{\stackrel{p_+}{\longrightarrow}}_{p_-} = K_0 \qquad (6.1)$$

$$[\operatorname{CoOx}_{3}(\operatorname{H}_{2}\operatorname{O})]^{3-} \xrightarrow[r_{2}]{r_{2}} [\operatorname{CoOx}_{2}(\operatorname{Ox}^{-}) \dots]^{3-}$$
(6.2)

$$[CoOx_2(Ox^-) \dots]^{3-} \xrightarrow{r_3} CoOx_2^{2-} + CO_2^{-} + CO_2$$
(6.3)

$$\operatorname{CO}_2^- + \operatorname{CoOx}_3^{3-} \xrightarrow{r_4} \operatorname{Co}^{11} + 3 \operatorname{Ox}^{2-} + \operatorname{CO}_2$$
 (6.4)

$$[CoOx_{3}(H_{2}O)]^{3-} + *CoOx_{2}^{2-} \qquad \xleftarrow{R_{2}}{} \qquad *[CoOx_{3}(H_{2}O)]^{3-} + CoOx_{2}^{2-} \qquad (6.5)$$

I: oktaedrisch koordiniertes Co^{III} der Symmetrie D_3 mit drei zweizähnigen Liganden Ox²-. II: oktaedrisch koordiniertes Co^{III} mit zwei zweizähnigen Liganden und je einem einzähnigen Oxalat und H₂O (Symmetrie approx. C_2).

III: Co^{II}-Komplex mit koordiniertem Radikal-Ion Ox-.

- ¹²) A. J. MCCAFFERY & S. F. MASON, Proc. chem. Soc. 1962, 388.
- ¹³) A. L. PORTE, H. S. GUTOWSKY & G. M. HARRIS, J. chem. Physics 34, 66 (1961).

Konfigurationswechsel:	(6.1) und (6.2)
Zerfall:	(6.1), (6.2), (6.3) und (6.4)
Elektronaustausch:	(6.1) und (6.5).

1. Der thermische Zerfall

Das Lösungsspektrum des $CoOx_3^{3-}$ weist zwei Banden bei 425 m μ ($\epsilon = 218$) und 606 m μ ($\epsilon = 165$) auf, die eine spektrophotometrische Konzentrationsbestimmung erlauben, selbst wenn das Zerfallsprodukt Co¹¹ erscheint. Dessen Maxima in Aquound Oxalato-Komplexen liegen im Bereich 515 bis 535 m μ , und die Extinktionskoeffizienten sind schon für die Maxima um eine Grössenordnung kleiner. Man misst natürlich die Summe der Konzentrationen beider Gleichgewichtspartner in (3), die im folgenden stets mit *B* abgekürzt werden soll.

1.1. Der Zerfall im neutralen Medium. Im Hinblick auf das Studium der Säureund Metall-Katalyse wurde eine hohe Neutralelektrolytkonzentration angesetzt, die zudem die Löslichkeit des CoOx erhöht. Tabelle 1 enthält die Daten für eine Reihe von Versuchen, in denen bis zur Halbwertszeit des Zerfalls durchwegs das empirische Gesetz (7) gültig ist.

$$\ln \frac{B_0}{B} = k_0 \cdot t \tag{7}$$

t: Zeit, B_{θ} : t = 0, B: $t \neq 0$.

Nr.	Temp. °C	B ₀	$\begin{array}{l} \operatorname{Medium} \\ \mathbf{M} = \operatorname{Mol} \end{array}$	/1	Ionale Stärke µ	k ₀ s ⁻¹
1	25	$3 \cdot 10^{-3}$	K,Ox	0,5 м	1,5	3,0 · 10-7
2	32,5	$3 \cdot 10^{-3}$	KŐX	0,5 м	1,5	$9,8 \cdot 10^{-7}$
3	47,5	$3 \cdot 10^{-3}$	K ₀ Ox	0,5 м	1,5	$1,05 \cdot 10^{-5}$
4	55,0	3 · 10-3	K_2Ox	0,5 м	1,5	2,85 · 10-5
5	40	$2,5 \cdot 10^{-3}$	-		0,015	$4,1 \cdot 10^{-6}$
6	40	$3,0 \cdot 10^{-3}$	$NaClO_4$	1,5 м	1,5	$4,2 \cdot 10^{-6}$
7	40	$3,0 \cdot 10^{-3}$	KF	2,4 м	2,4	$4, 4 \cdot 10^{-6}$
8	40	3,0 · 10-3	KCl	1,5 м	1,5	$4,0 \cdot 10^{-6}$
9	40	$1,5 \cdot 10^{-3}$	NaClO	0,9м	0,9	4,3 · 10−6
10	40	$1,5 \cdot 10^{-3}$	K,SO4	0,3 м	0,9	$3,9 \cdot 10^{-6}$
11	40	$1,5 \cdot 10^{-3}$	K ₂ Ox	0,3 м	0,9	$3,0 \cdot 10^{-6}$
Genau	igkeit in k _o : :	± 3%	·			

Tabelle 1. Zerfall von CoOx3- in neutralem wässerigem Medium

Die Versuche 1 bis 4 liefern die Parameter der ARRHENIUS-Gleichung, welche zusammen mit Daten anderer Autoren in Tab. 2 angegeben sind.

Temperatur- intervall	μ	$\log A$	E_A kcal/Mol	Lit.
2555°	1,5	15,3 ± 0,4	$30,0 \pm 0,5$	diese Arbeit
50–7 0°	0,05	15,1	30,2	⁶)
?	~0,02	18,2	33,6	5)

Tabelle 2. Parameter der ARRHENIUS-Gleichung $k_0 = A \cdot e^{-E} A / kT$

Die zweite Gruppe der Daten (Nr. 5–8) zeigt, dass kein ausgeprägter Effekt der ionalen Stärke hervortritt, wogegen die dritte Gruppe (Nr. 9, 10, 11) eine Änderung von k_0 über die experimentellen Fehlergrenzen hinaus anzeigt. Die Zerfallskonstante nimmt in der Reihenfolge steigender Basizität und Komplexbildungstendenz der Anionen gegenüber Co^{II} ab. Man hat also vor allem spezifische Effekte der Ionen zu beachten.

Erfolgt die primäre Reaktion am solvatisierten Ion CoOx_3^{3-} und ist sein Solvatwasser daran beteiligt, welches durch das Ion selbst stärker beeinflusst wird als durch z. B. den Elektrolyten NaClO₄, so müssen Mediumeffekte dann drastisch in Erscheinung treten, wenn die Solvathülle verändert wird. Damit würde das Gleichgewicht (3) zugunsten der geschlossenen Form (I) verschoben. Der Tab. 3 entnimmt man, dass tatsächlich die Halbwertszeit des Zerfalls in Dimethylformamid um den Faktor ca. 30 ansteigt. Die Dimethylformamidmolekel ist bedeutend grösser als H₂O und hat zudem nicht die Möglichkeit, eine Wasserstoffbrücke zum freistehenden Ende der einzähnigen Oxalatgruppe zu bilden.

Nr.	Temp. °C	B_0	Medium	μ	k_0 s ⁻¹
5	40	2,5 · 10-3	H,O	0,015	4,1 · 10 ⁻⁶
12	4 0	0,8 · 10-3	DMF	0	0,15 · 10-6
13	47,5	3 · 10-3	NaClO ₄ 1,5 m	1,5	$1,3 \cdot 10^{-5}$
14	47,5	3 · 10-3	NaNO ₃ 1,5 M	1,5	$0.80 \cdot 10^{-5}$
15	55	3 · 10-8	NaClO ₄ 1,5 M	1,5	$4,0 \cdot 10^{-5}$
16	55	$3 \cdot 10^{-3}$	NaNO ₃ 1,5 M	1,5	2,3 · 10-5
17	55	$3 \cdot 10^{-3}$	LiClO ₄ 1,5 м	1,5	$8,2 \cdot 10^{-5}$
18	40	$3 \cdot 10^{-3}$	К ₂ Ох 0,5 м	1,5	3,4 · 10− ⁶
			Zn^{2+} 1,5 \cdot 10 ⁻² M		
19	40	$3 \cdot 10^{-3}$	К ₂ Ох 0,5м Со ²⁺ 1,5 · 10 ⁻² м	1,5	$2,1 \cdot 10^{-6}$

Tabelle 3. Zerfallskonstanten k_0 des CoOx₃³⁻ in wässeriger Lösung und in Dimethylformamid (DMF)

Spezifische Wirkungen einiger Ionen werden durch die restlichen ausgewählten Daten in Tab. 3 angedeutet Das Nitrat-Ion (Nr. 14 und 16) verursacht eine Abnahme, Lithium-Ion (Nr. 17) eine Beschleunigung, und bei hoher Oxalatkonzentration verzögert Co^{II} den Zerfall (Nr. 18 und 19). Die Effekte des NO₃⁻ und der Oxalatokomplexe $CoOx_2^{2^-}$ bzw. $CoOx_3^{4^-}$ werfen die Frage nach dem Zwischenprodukt des Zerfalls auf. Als solches kommt nur das Radikal-Ion $C_2O_4^-$ oder aber CO_2^- in Frage.

Der experimentelle Nachweis des von anderen Autoren postulierten $C_2O_4^-$ wurde über die hypothetische Reaktionsfolge (4), (8), (5) angestrebt²)¹).

$$\operatorname{CoOx}_{3}^{3-} \longrightarrow \operatorname{CoOx}_{2}^{2-} + \operatorname{C}_{2}\operatorname{O}_{4}^{-} \tag{4}$$

$$C_2O_4^- + {}^{14}C_2O_4^{2-} \xrightarrow{R_e} {}^{14}C_2O_4^- + C_2O_4^{2-}$$
(8)

$$CoOx_3^{3-} + {}^{14}C_2O_4^{-} \longrightarrow 2 {}^{14}CO_2 + Co^{11} + 3 C_2O_4^{2-}$$
 (5)

$$C_2O_4^- \longrightarrow CO_2 + CO_2^-$$
 (9)

Das Experiment hätte den Austausch für den Fall $k'_3 \leq 10^{+3} k_e$ erfassen können. Nach der Theorie von MARCUS¹⁴) würde eine Abschätzung der Konstante k_e etwa die Grössenordnung $10^{+6} \text{ m}^{-1}\text{s}^{-1}$ ergeben. Da experimentell kein ¹⁴CO₂ gefunden worden ist, wenn der Austausch (2) verhindert wurde, ist die Existenz von $C_2O_4^-$ entweder ausgeschlossen oder k'_3 geradezu unwahrscheinlich hoch für einen Redoxprozess an CoOx³₃⁻. TAUBE¹⁵) hat gezeigt, dass auch ein Gleichgewicht (9) nicht verifiziert werden kann, wenn an Stelle von CoOx³₃⁻ der analoge Mn¹¹¹-Komplex das Radikal-Ion $C_2O_4^-$ erzeugen soll, und Noves¹⁶) hat im selben System experimentelle Hinweise für die Alternative gefunden, nämlich die Spaltung am Zentral-Ion in CO₂ und CO₂⁻.

Es ist logischer, das CO_2^- als in Lösung erscheinendes Zwischenprodukt zu betrachten, denn es muss auf jeden Fall eine Deformation des am Co¹¹¹ bzw. Mn¹¹¹ gebildeten Radikal-Ions $C_2O_4^-$ eintreten. Unter dieser Voraussetzung kann man die hemmende Wirkung des $CoOx_2^{2-}$ nicht über die Reaktionen (4) erklären, wie dies andere Autoren³) vorgeschlagen haben; darnach würde die «steady-state»-Konzentration von $C_2O_4^-$ herabgesetzt, innerhalb des Schemas (6.1) bis (6.5) jedoch jene der Zwischenstufe III, und dies müsste durch Rückbildung von $CoOx_3^{3-}$ aus III und $CoOx_2^{2-}$ geschehen. Die Fig. 2, 3 und 4 geben eine charakteristische Auswahl von experimentellen Daten wieder.

 Fig. 2. Zerfall des CoOx³⁻₃ in wässeriger Lösung bei ionaler Stärke 1,5 Elektrolyte: K₂Ox, NaClO₄ und LiClO₄. (Siehe Tab. 1 und Tab. 3.)
 Fig. 3. Zerfall des CoOx³⁻₃ in wässeriger Lösung (μ = 0,05) und in Dimethylformamid (DMF) 40°C. d: Tage. (Tab. 3.)

1.2. Die Säurekatalyse des Zerfalls. Andere Autoren⁵)⁶) haben für die experimentelle Zerfallskonstante k_b im sauren Bereich eine lineare Beziehung (10) gefunden.

$$k_{b} = k_{0} + k_{H} \cdot [H_{3}O^{+}].$$
(10)

Die von ihnen angegebenen Parameter A und E_A stimmen nicht überein (log A 14,9 bzw. 19,2; E_A 23,8 bzw. 32,5 kcal/Mol).

- ¹⁵) R. M. BILBURN & H. TAUBE, J. Amer. chem. Soc. 81, 3516 (1959).
- ¹⁶) S. J. Adler & R. M. Noves, J. Amer. chem. Soc. 77, 2036 (1955).

¹⁴⁾ R. A. MARCUS, J. chem. Physics 26, 867, 872 (1957).

Fig. 4. Temperaturabhängigkeit der Zerfallskonstanten k₀ des CoOx₃³⁻ in wässeriger Lösung (k₀ in s⁻¹). (Tab. 3.) I: 0,5M K₂Ox; II: 1,5M NaNO₃; III: 1,5M NaClO₄

Man hat in saurer Lösung allgemein eine Abnahme der Konzentration $[H_3O^+]$ durch die Protonierung von freigesetztem Oxalat sowie die katalytische Wirkung des simultan erscheinenden Co^{II} zu berücksichtigen. Wir haben deshalb gegenüber *B* hohe Säurekonzentrationen gewählt. Man hat dann die modifizierte Bruttogleichung des Zerfalls (11):

$$2 \operatorname{CoOx}_{3}^{3-} + 5p \cdot \mathrm{H}^{+} \longrightarrow 2 \operatorname{Co}^{\mathrm{II}} + 2 \operatorname{CO}_{2} + 5 \operatorname{H}_{p} \operatorname{Ox}^{p-2}.$$
(11)

Der Faktor p ist der Protonierungsgrad des freigesetzten Oxalates, der im untersuchten Aciditätsbereich nach den im selben Medium bestimmten pK-Werten (1,2; 3,70)¹⁷) der Oxalsäure zwischen 1,6 und 1,8 variiert.

Setzt man voraus, dass keine stöchiometrisch ins Gewicht fallende Protonierung von CoOx_3^{3-} erfolgt, so darf man ansetzen:

$$\frac{\mathrm{d}B}{\mathrm{d}t} = k_0 \cdot B + k_{\mathrm{H}} [H_0 - f(B_0 - B)] B + k_{\mathrm{Co}} (B_0 - B) B.$$
(12)

Hierin bedeuten H_0 : $[H_3O^+]$ zur Zeit t = 0; p: Protonierungsgrad von Oxalat; $f: 2, 5 \cdot p$; k_{Co} : der Katalyse durch Co^{II} zugeordnete Geschwindigkeitskonstante 2. Ordnung.

Ist (13) erfüllt:

$$k_{\rm H} \cdot H_{0} \gg (k_{\rm H} f - k_{\rm Co}) \cdot (B_{0} - B), \qquad (13)$$

so erhält man die vereinfachte Beziehung (14):

$$\frac{\mathrm{d}B}{\mathrm{d}t} = k_{0} \cdot B + k_{\mathrm{H}} \cdot H_{0} \cdot B = k_{b} \cdot B.$$
(14)

Für die Lösungen der Tab. 4 gilt (14) für die kleinste Säurekonzentration bis zur Halbwertszeit innerhalb von $5^{0}/_{0}^{18}$.

Die der Konstanten $k_{\rm H}$ zugeordnete Aktivierungsenergie ist für jede der drei Konzentrationen 0,1, 0,2 und 0,3 m HClO₄ innerhalb der Fehlergrenzen (± 1 kcal) dieselbe wie für den Zerfall im neutralen Bereich, nämlich 30 Kcal/Mol. In Fig. 5

¹⁷) Wir danken Herrn Dr. G. ANDEREGG bestens für die Durchführung der pK-Bestimmungen.

¹⁸) Für geringe Abweichungen kann in einfacher Weise für den quadratischen Term korrigiert werden.

		· · · · · · · · · · · · · · · · · · ·			
Nr.	Temp. °C	B_0	Konz. NaClO ₄	Konz. HClO ₄	${}^{k_{ m H}}_{M^{-1}}{ m s}^{-1}$
20	25	5,4 · 10-3	1,4	0,100	$2,9 \cdot 10^{-5}$
21	25	5,4 · 10-8	1,3	0,200	3,3 · 10-5
22	25	5,4 · 10 ^{- 8}	1,2	0,300	$3,6 \cdot 10^{-5}$
23	32,5	$3 \cdot 10^{-3}$	1,4	0,100	$9,3 \cdot 10^{-5}$
24	32,5	$4 \cdot 10^{-3}$	1,3	0,200	$1,1 \cdot 10^{-4}$
25	32,5	$4 \cdot 10^{-3}$	1,2	0,300	$1,2 \cdot 10^{-4}$
26	40	3 · 10-3	1,4	0,100	$3,6 \cdot 10^{-4}$
27	40	3 · 10 ⁻³	1,3	0,200	$4,2 \cdot 10^{-4}$
28	40	$3 \cdot 10^{-3}$	1,2	0,300	$4,6 \cdot 10^{-4}$

Tabelle 4. Z	erfall des CoO:	r ^{3–} in saure	r Lösung	
$\mu = 1.5$ (NaClO ₂); $k_{\rm H}$ definier	t nach Gl. (14) bzw. (12	.)

erkennt man, wie k_b mit steigender Konzentration an HClO₄ zunimmt und die vorausgesetzte Relation (14) nicht streng erfüllt zu sein scheint. Dies würde formal einer höheren Potenz als Eins im Faktor H entsprechen. Wahrscheinlich liegt ein Mediumeffekt vor, indem die Säure mit zunehmendem Verhältnis von HClO₄/ NaClO₄ acider wird¹⁹). (Einen analogen Befund wird man auch bei der Katalyse durch Zn²⁺ festellen; siehe nächster Abschnitt.)

Fig. 5. Abhängigkeit der Zerfallskonstanten k_b des CoOx₃³⁻ in saurer Lösung von der Konzentration der HClO₄. 32,5°C. μ = 1,5 (NaClO₄).

Die Katalyse kommt also im Parameter Aktivierungsentropie ΔS^{\pm} zum Ausdruck, und man hat grundsätzlich zwei Wirkungsprinzipien zu betrachten, die innerhalb der vorliegenden Daten nicht auseinandergehalten werden können:

a) Das Hydronium-Ion verschiebt das vorgelagerte Gleichgewicht (6.1) zugunsten der offenen Form II.

b) Durch Protonierung der freistehenden Oxalatgruppe in II wird die Wahrscheinlichkeit des Elektrontransfers (6.2) erhöht.

1.3. Katalyse des Zerfalls durch Metallaquo-Ionen. In Gegenwart grösserer Konzentrationen an Metallaquo-Ionen müssen prinzipiell solvensgetrennte Ionenassoziate erwartet werden, in denen das Metallaquo-Ion seine Hydrathülle unver-

¹⁹) Es ist nicht ohne weiteres abzuschätzen, ob der Mediumeinfluss die Wasserstoffionenaktivität oder die Aktivität der Base, d.h. der offenen Form von $CoOx_3^{3-}$ betrifft.

ändert beibehält. Erwartungsgemäss können solche spektrophotometrisch nicht erfasst werden²⁰); man misst deshalb die Summe

$$B_{tot} = B + MB.$$

Hierin bedeutet MB: [(CoOx₃³⁻) (M_{aq}⁺)]; B: [CoOx₃³⁻].

Sollte ein stabiles Ionenassoziat existieren und die Konzentration an freiem $CoOx_3^3$ - herabsetzen, so würde im Grenzfall die Zerfallsgeschwindigkeit des Ionenassoziates gemessen und eine weitere Erhöhung der Metallkonzentration keine Zu-

Tabelle 5. Zerfall des $CoOx_3^{3-}$: Katalyse durch Metallaquo-Ionen

 $\mu = 1,5$ (NaClO₄). Metalle als Perchlorate; B_{tot} (t = 0) zwischen 1,5 und 4·10⁻³. k_b : experimentelle Zerfallskonstante erster Ordnung. Temp. 32,5°

Nr.	Metall-Ion	Kon z .	HClO ₄	k_b s ⁻¹	${}^{k_{\mathbf{M}}}_{M^{-1}}$ s ⁻¹
29	Al ³⁺	0,05	0,05	$2,6 \cdot 10^{-5}$	
30		0,10	0,05	$4,2 \cdot 10^{-5}$	
31		0,15	0,05	$5,6 \cdot 10^{-5}$	4,4 · 10-4
32		0,20	0,05	$6,8 \cdot 10^{-5}$	$(K_{\rm MB} = 2)$
33		0,25	0,05	$7,9 \cdot 10^{-5}$]
34	Zn ²⁺	0,10	0,04	$1,6 \cdot 10^{-5}$	
35		0,10	0,01	$1,3 \cdot 10^{-5}$	
36		0,10	0,20	$3,6 \cdot 10^{-5}$	Mittelwert:
37		0,10	0,18	$3,4 \cdot 10^{-5}$	1,2 · 10-4
38		0,20	0,04	$3,0 \cdot 10^{-5}$	$(\pm 0.1 \cdot 10^{-4})$
39		0,20	0,05	3,2 · 10 ⁻⁵)
40	Zn ²⁺	0,30	0,04	$4,5 \cdot 10^{-5}$	
41		0,40	0,04	$6,3 \cdot 10^{-5}$	
42		0,50	0,04	$7.9 \cdot 10^{-5}$	

nahme der Zerfallsgeschwindigkeit mehr bewirken. Treten jedoch nur Kollisionspaare auf, so gilt stets $B_{tot} = B$. Man setzt deshalb an:

$$B_{tot} = B + MB = B (1 + K_{MB} \cdot M); K_{MB} = \frac{MB}{M \cdot B}$$
$$= B \cdot \beta$$

M: Konz. des Metallaquo-Ions

$$\frac{\mathrm{d}B_{tot}}{\mathrm{d}t} = k_0 B + k_{\mathrm{MB}} \cdot MB + k_{\mathrm{H}} \cdot H \cdot B$$
$$= (k_0 + k_{\mathrm{M}} \cdot M + k_{\mathrm{H}} \cdot H) \frac{B_{tot}}{\beta}. \tag{15}$$

 $k_{\rm M} = k_{\rm MB} \, K_{\rm MB}$

Der eingeklammerte Ausdruck in (15) bleibt nur unabhängig von der Zeit t, wenn M und H im Laufe der Reaktion nicht verändert werden. Da im Zerfall simultan Co^{II} und Oxalat freigesetzt werden, hat man in den Versuchen $M \gg B_{tot}$ gewählt.

²⁰) Experimentell kontrolliert für die Aquo-Ionen Cu²⁺ und Zn²⁺.

Der Term für die Säureeinwirkung muss beibehalten werden, da der Lösung meistens Säure zugesetzt werden muss, um die Deprotonierung der Metallaquo-Ionen zu

$$2 \operatorname{CoOx}_{3}^{3-} + 5 \operatorname{M}^{+} \longrightarrow 2 \operatorname{Co}^{\mathrm{H}} + 5 \operatorname{MOx}^{-2} + 2 \operatorname{CO}_{2}$$
(16)

unterdrücken. Im allgemeinen kann auch M > H gewählt werden, so dass der Bruttozerfall z. B. als (16) zu formulieren ist, wenn die Komplexbildung des Metall-Ions M die Protonierung von Oxalat verhindert.

Setzt man (15) in Beziehung mit der experimentellen Konstante k_b , d. h. (17):

$$\frac{\mathrm{d}B_{tot}}{\mathrm{d}t} = k_b \cdot B_{tot},\tag{17}$$

so erhält man durch Umformen (18):

$$\frac{k_{b}-(k_{0}+k_{\rm H}H)}{M} = k_{\rm M} - k_{b} \cdot K_{\rm MB}.$$
(18)

Allgemein folgt k_b direkt aus dem Experiment, und bei Kenntnis von k_0 , $k_{\rm H}$, H und M kann die Gültigkeit von (18) geprüft werden. In allen Experimenten (Tab. 5 und 6) wurde die Abhängigkeit erster Ordnung (17) festgestellt.

Den Konstanten k_b von Nr. 29 bis 33 (Tab. 5) sind nach (18) folgende Grössen zugeordnet:

$$k_{A1}$$
: 4,4 · 10⁻⁴ M^{-1} s⁻¹; k_{A1B} : 2

Fig. 6 zeigt den Verlauf von k_b mit M, und zum Vergleich ist die Kurve a eingetragen, welche mit $k_{\rm M} = 10^{-2} \ M^{-1} \ {\rm s}^{-1}$ und der grösseren Konstanten $K_{\rm MB} = 10^{+2}$ berechnet worden ist. Man kann nicht ohne weiteres sagen, ob $K_{\rm MB}$ eine reale Assoziationskonstante bedeutet oder einen Mediumeffekt ausdrückt, da ja bei konstanter ionaler Stärke die Zusammensetzung des Mediums sich stark ändert, nämlich von 1,2 M NaClO₄, 0,05 Al(ClO₄)₃ bis zu 0,25 Al(ClO₄)₃.

Es ist aber eindeutig keine Ionenassoziation entsprechend einer Konstanten $K_{\rm MB}$ von der Grössenordnung 10⁺³ festzustellen, was der Stabilität des Assoziates vom gleichen Ladungstypus $({\rm La}_{aq}^{3+})({\rm Fe}({\rm CN})_6^{3-})$ für $\mu \rightarrow 0$ entsprechen würde²¹). Erwartungsgemäss erhält man für die Katalyse durch ${\rm Zn}_{aq}^{2+}$ keine analoge Variation von k_b mit seiner Konzentration. (Nr. 34, 38, 40, 41, 42 der Tab. 5, Fig. 7.)

Fig. 6. Katalyse des Zerfalls von $CoOx_3^{3-}$ durch Al_{aq}^{3+} (Perchlorat). 32,5°C. $\mu = 1,5$ (NaClO₄).

 k_b : Experimentelle Zerfallskonstante;
a: Berechnet nach Gl. (18) mit $k_{\rm Al}=10^{-2}~M^{-1}{\rm s}^{-1}$ und
 $K_{\rm AlB}=10^{+2}$

²¹) R. A. ROBINSON & R. H. STOKES, «Electrolyte Solutions», Butterworths, London 1959, Kap. 14.

Fig. 7. Katalyse des Zerfalls von $CoOx_3^{3-}$ durch Zn_{aq}^{2+} (Perchlorat). $32,5^{\circ}C. \ \mu = 1,5$ (NaClO₄). k_b : Experimentelle Zerfallskonstante; b: Berechnet nach Gl. (18) mit $\beta = 1$ und $k_{Zn} = 1,2 \cdot 10^{-4}$ $M^{-1}s^{-1}$

Die Vergleichsgerade b in Fig. 7 gilt für die Werte $k_{\rm M} = 1, 2 \cdot 10^{-4}$, $\beta = 1$ im Ausdruck (15). Man hat also ähnlich wie bei der Säurekatalyse für $k_{\rm H}$ eine geringe Zunahme von $k_{\rm Zn}$ mit [Zn²⁺], was wir einem Mediumeffekt zuschreiben²²).

Die Wirkung verschiedener Metall-Ionen soll an Hand der Konstanten $k_{\rm M}$ verglichen werden, die man nach der Relation (15) für Konzentrationen 0,1 M (dreiwertige Metalle) oder 0,2 M (zweiwertige) aus k_b unter der Annahme $\beta = 1$ erhalten hat. Die erste Gruppe der Angaben in Tab. 6 für dieselbe Temperatur lässt die

Nr.	Temp. °C	Aquo-Ion	Konz. M	$\begin{array}{c} \mathrm{HClO}_{4} \\ M \end{array}$	k_b s ⁻¹	$k_{ m M}$ $M^{-1} m s^{-1}$
43	32,5	Mg ²⁺	0,30	_	3,2 · 10 ⁻⁶	5,4 · 10-6
44		$\mathbf{Be^{2+}}$	0,10	0,10	$1,4 \cdot 10^{-5}$	$3,0 \cdot 10^{-5}$
45		Cd^{2+}	0,20	0,02	0,84 · 10 ⁻⁵	$2,5 \cdot 10^{-5}$
46		Mn^{2+}	0,20	0,02	$1,2 \cdot 10^{-5}$	4 - 10 -
47		Mn ²⁺	0,20	0,10	$2,0 \cdot 10^{-5}$	4,5 · 10-5
48		Co ²⁺	0,20	0,02	$1,8 \cdot 10^{-5}$	7,5 · 10-5
49		Ni^{2+}	0,20	0,02	$4,0 \cdot 10^{-5}$	$2,0 \cdot 10^{-4}$
50		Cr ³⁺	0,10	0,10	$4,6 \cdot 10^{-5}$	3,5 · 10-4
51		Cu ²⁺	0,10	0,02	$7,9 \cdot 10^{-5}$	7,6 · 10-4
52		Fe^{3+}	0,10	0,15	6,0 · 10-3	6,0 · 10-3
53	25	Mg^{2+}	0,30	-	7,6 · 10 ⁻⁷	
54	40	Mg^{2+}	0,30		9,6 · 10-6	
55	25	Zn^{2+}	0,10	0,02	3,4 · 10-6	
56	40	Zn ²⁺	0,10	0,02	3,9 · 10⁻⁵	
57	23,9	Al ²⁺	0,10	0,10	$1,2 \cdot 10^{-5}$	
58	32,5	Al ⁸⁺	0,10	0,10	6, 7 · 10 ⁻⁵	
59	40	Al ³⁺	0,10	0,10	$2,2 \cdot 10^{-4}$	
60	23,9	Fe ³⁺	0,10	0,15	$1,4 \cdot 10^{-4}$	
61	40	Fe^{3+}	0,10	0,15	$2,2 \cdot 10^{-3}$	

Tabelle 6. Zerfall des CoOx $_3^{3-}$: Katalyse durch Metallaquo-Ionen $\mu = 1,5$ (NaClO₄)

²²) Sollte gegen höhere Konzentrationen eine tetraedrische Koordination des Zn²⁺ bevorzugt werden, so wäre infolge verkürzter Abstände eine erhöhte Komplexbildungstendenz zu erwarten. Über relative Abstände in Gruppen AB₄ und AB₆ siehe z. B. J. D. DUNITZ & L. E. ORGEL, Advances Inorg. Radiochem. 2, 54 (1960). individuelle Wirkung der Metall-Ionen erkennen, und die zweite Gruppe gibt Anhaltspunkte für die Temperaturabhängigkeit.

Fig. 8. Temperaturabhängigkeit der Zerfallskonstanten k_b (sec⁻¹) bei Gegenwart von Metall-Ionen (Siehe Tab. 5 und 6).

Eingezeichnete Geraden entsprechen $E_A = 30$ kcal/Mol.

Die $k_{\rm M}$ -Werte unterscheiden sich von $k_{\rm Mg}$ bis $k_{\rm Fe}$ insgesamt um einen Faktor ca. 10⁺³, und Fig. 8 zeigt, dass die der Konstanten k_b zugeordnete Aktivierungsenergie nicht wesentlich von 30 kcal/Mol abweicht, denn die eingezeichneten Geraden entsprechen diesem Wert. Man muss also annehmen, dass die Wirkung der Metall-Ionen sich in erster Linie in den Entropiegliedern ausdrückt, was für z. B. ΔS^{\pm} aus $k_{\rm Fe}$ mit $E_{\rm A} = 30$ kcal/Mol eine Zunahme gegenüber ΔS^{\pm} (k_0) von 19 E. Einh. ausmacht (siehe Tab. 10).

Den wohl wichtigsten Hinweis zum Problem des Mechanismus der Metallkatalyse besitzt man in der Reihe steigender Wirkung der Metall-Ionen (19):

Diese Reihe repräsentiert weder die korrekte Reihe zunehmender Stabilität der Oxalatokomplexe, noch jene zunehmender Acidität der Metallaquo-Ionen (pK_1) , die nach dem heutigen Stand durch (20) gegeben ist²³).

$$\begin{array}{c|c} {\rm Li}^{+} < {\rm Mg}^{2+} < {\rm Mn}^{2+}, \ {\rm Cd}^{2+} < {\rm Co}^{2+}, \ {\rm Ni}^{2+}, \ {\rm Zn}^{2+} \\ & < {\rm Be}^{2+} < {\rm Cu}^{2+} < {\rm Al}^{2+} \leqslant {\rm Cr}^{3+} < {\rm Fe}^{3+} \end{array} \right)$$
(20)

Nach den Daten von Zit.⁷) kann die Reihe zunehmender Stabilität der Oxalatokomplexe (21) abgeschätzt werden:

$$\begin{array}{c|c} {\rm Li}^{+} < {\rm Mg}^{2+} < {\rm Mn}^{2+} < {\rm Cd}^{2+} < ({\rm Be})^{2+} < {\rm Co}^{2+}, \, {\rm Ni}^{2+} \\ \\ < {\rm Zn}^{2+} < {\rm Cu}^{2+} < {\rm Al}^{3+} < {\rm Fe}^{3+} < ({\rm Cr})^{3+} \end{array} \right)$$
(21)

Für Cr³⁺ hat man keine Zahlenangabe und für Be²⁺ nur eine unsichere; angesichts der höheren Ligandfeldstabilisierung im Chromkomplex gegenüber dem

²³ J. BJERRUM, G. SCHWARZENBACH & L. G. SILLÉN, «Stability Constants», Spec. Publ. No 7, The Chemical Soc., London 1958, sowie unter Verwendung unveröffentlichter Resultate von G. SCHWARZENBACH & H. WENGER.

Eisen(III)-Komplex darf man die eingezeichnete Stellung in (21) annehmen. Es ist aufschlussreich, die Stellung von Be²⁺ einerseits und die Reihenfolge der Ionen Al³⁺, Cr^{3+} und Cu^{2+} anderseits in den drei Reihen zu vergleichen:

$$Cr \leq Al < Cu$$
 in (19),
 $Cu < Al < Cr$ in (20) und (21).

Be²⁺ und Cr³⁺ sind gegenüber den andern Aquo-Ionen, z. B. durch langsamere Komplexbildungsreaktionen mit Sulfat (Be²⁺)²⁴), extrem langsame Austauschgeschwindigkeit des Wassers erster Sphäre mit dem Lösungsmittel (Cr³⁺)²⁵)²⁶) und erfassbar geringere Bildungsgeschwindigkeit von polynuclearen Hydroxokomplexen (Be²⁺ und Cr³⁺) ausgezeichnet. Diesem Umstand verdankt man genaue pK₁-Werte von Be²⁺_{aq} und Cr³⁺, die SCHWARZENBACH & WENGER²⁷) über eine Strömungstitration einwandfrei bestimmen konnten, während z. B. bei Kupfer eine enorm rasche Bildung von Polynuclearen eintritt.

Der katalytische Mechanismus kann mit der Acidität der Metallaquo-Ionen und ihrem Verhalten gegenüber Substitutionen in der ersten Sphäre verknüpft sein, wenn die analogen Prinzipien gelten, welche im letzten Abschnitt für die Säurekatalyse betrachtet wurden:

a) Das Metall-Ion kann im Kollisionspaar bzw. Ionenassoziat die Solvatzwischenschicht protonieren. Das erzeugte Hydronium-Ion substituiert einen Oxalatsauerstoff am Co¹¹¹, und die Deprotonierung erfolgt noch innerhalb der Lebensdauer des Kollisionspaares.

b) Die freiwerdende einzähnig an Co^{III} gebundene Oxalatgruppe kann mit dem Aquo-Ion koordinieren.

Im Rahmen des postulierten Schemas (6.1 bis 6.5) kann somit eine Verschiebung des vorgelagerten Gleichgewichtes (6.1) eintreten und weiter eine erhöhte Wahrscheinlichkeit für die Dehnung der Co^{III}-O(Ox)-Bindung, welche dem Elektrontransfer vorausgehen muss. Die approximativ unveränderte Aktivierungsenergie müsste bedeuten, der Einfluss des Metall-Ions über die Oxalatbrücke zum Co^{III} sei gering, und damit ist eine Parallele zur Säurekatalyse vorhanden. Die experimentelle Aktivierungsenergie stützt das Argument in beiden Fällen²⁸). Aus dem katalytischen Einfluss des Cr³⁺ geht hervor, dass auch eine Assoziation der einzähnigen Oxalatgruppe an das voll hydratisierte Ion noch wirksam sein kann.

²⁴) M. EIGEN, Z. Elektrochem. 64, 115 (1960); H. DIEBLER & M. EIGEN, Z. physikal. Chem., NF 20, 299 (1959).

²⁵) H. TAUBE, Advances Inorg. Radiochem. 1, 5 (1959).

²⁶) M. EIGEN in «Plenary Lectures», 7. ICCC Stockholm 1962, Butterworths, London 1963, S. 97; siehe auch F. BASOLO & R. G. PEARSON, Advances Inorg. Radiochem. 3, 60 (1961).

²⁷) Unveröffentlichte Arbeiten von G. SCHWARZENBACH & H. WENGER.

²⁸) Die freie Enthalpie der Protonierung von HOx⁻ sowie der Komplexbildung von Ox²⁻ mit Mn^{II}, Co^{II}, Ni^{II} ändert sich nur wenig im Temperaturintervall 25 bis 40°. Die Absolutwerte der Konstanten variieren um maximal ca. 10% (A. MCAULEY & G. N. NANCOLLAS, J. chem. Soc. 1961, 2215).

2. Der Elektronaustausch mit Dioxalatokobalt(II)-Ion

2.1. Methodik. Man hat beim Studium der Reaktion (2) zu berücksichtigen, dass der Zerfallsprozess von einer gegenseitigen Umwandlung der Austauschpartner

$$\operatorname{CoOX}_{3}^{3-} + {}^{60}\operatorname{CoOX}_{n}^{2-2n} \xrightarrow{60} \operatorname{CoOX}_{3}^{3-} + \operatorname{CoOX}^{2-2n}$$
(2)

begleitet ist, deren Konzentrationen somit zeitlich variieren. Durch geeignete Wahl der Konzentrationsverhältnisse kann man die Verteilungskoeffizienten $f_n = [\text{CoOx}_n^{2-2n}] / [\text{Co}^{\text{II}}]$ praktisch konstant halten.

$$[\operatorname{Co}^{II}] = \sum_{n=0}^{3} [\operatorname{CoOx}_{n}^{2-2n}]$$
$$[\operatorname{Ox}]_{tot} = [\operatorname{Ox}^{2-}] + \sum_{n=1}^{3} n \cdot [\operatorname{CoOx}_{n}^{2-2n}].$$

Wählt man $B_0 = [\text{CoOX}_3^{3-}]_0$: 2 bis $5 \cdot 10^{-2}$; $A_0 = [\text{CoII}]_0$: 2 bis $5 \cdot 10^{-3}$; $[\text{OX}]_{tot}$: 0,20; 0,35; 0,50, so ändern sich die Koeffizienten f_n bis zum 20-proz. Zerfall des CoOX_3^{3-} nur wenig. Ausserdem ergibt sich aus den Stabilitätsdaten²⁹) für Oxalatokomplexe des CoII: $f_2 + f_3 \cong 1$.

In allen Lösungen wurde die ionale Stärke 1,5 (KNO₃) aufrechterhalten, und 10% des Oxalates wurden protoniert, d. h. der pcH-Wert³⁰) betrug 4,6. Man ist damit ausserhalb der Existenzgebiete von HCO_3^- , CO_3^{2-} und des polynuclearen Kations des DURRANT'schen Salzes³¹).

Das Leitisotop ⁶⁰Co wurde als Co^{II} eingesetzt und die in CoOx³⁻ erscheinende Aktivität verfolgt. Die saubere Trennung der Co^{III}- und Co^{II}-Komplexe ist nach folgendem Schema möglich:

CoOx₃³⁻, CoOx_n²⁻²ⁿ, Ox²⁻

$$\downarrow$$
 + Co^{II} Fällung der Hauptmenge Co^{II}
CoOx₃³⁻, (Co^{II}, {CoOx}) Vollständige Trennung von Resten Co^{II}
 \downarrow Dowex-1
{Harz, CoOx₃³⁻}
 Fe^{II} , Reduktive Entfernung des Co
aus dem Harz
 $e^{00}Co^{II}$, Fe^{II} usw. Auszählen

Da in der gewählten Versuchsdauer die Aktivität im CoOX_3^3 nur auf ca. 10% der Gesamtaktivität anstieg, war eine Abreicherung des 60 Co vom Co^{II} im Ver-

²⁹) Aus eigenen Löslichkeitsmessungen bis $[Ox]_{tot} 0, Im (\mu = 1, 2) : \varkappa_3 = 10 (25^\circ)$, und nach Daten von V. V. FOMIN & V. V. SINKOVSKII, C. A. 51, 7928 (1957) : $\varkappa_3 = 30$. \varkappa_3 : dritte individuelle Stabilitätskonstante. \varkappa_2 nach denselben Arbeiten : 130 bzw. 150.

³⁰) pcH = $-\log [H_3O]^+$. Definition von pH-Skalen siehe R. G. BATES, Chem. Reviews 42, 1 (1948), und R. G. BATES & G. SCHWARZENBACH, Helv. 38, 699 (1955).

³¹⁾ DURRANT'sches Salz {K₂CoOx₂(OH), 1,5H₂O}. Zerfall in wässeriger Lösung siehe ⁶), Elektronaustausch mit ⁶⁰CoOx₄⁻²ⁿ siehe Zit. ³).

hältnis 1:10⁻³ notwendig und wurde nach dieser Methode erreicht³²). Die Aktivität des Eluates hat man in einer Szintillationszählanlage ermittelt.

2.2. Empirisches Austauschgesetz. Der Elektronaustausch entspricht formal einem Austausch von ⁶⁰Co zwischen den Komplexen beider Oxydationsstufen. Die allgemeine Ableitung von Austauschgesetzen bei simultaner Umwandlung von Partnern ineinander ist von LUEHR und Mitarbeitern³³) durchgeführt worden. Die gemessene Zählrate liefert ein Mass für die spezifische Aktivität der Komplexe. Im vorliegenden Fall geht man von folgenden Grössen aus:

 S_{B0} : spez. Aktivität des CoOx³/₃ – zur Zeit t = 0 S_B : spez. Aktivität des CoOx³/₃ – zur Zeit $t \neq 0$ S_{∞} : spez. Aktivität des CoOx³/₃ – zur Zeit $t = \infty$ Austauschkoeffizient $F_B = (S_B - S_{B0})/(S_{\infty} - S_{B0})$

p(t): totale Änderung in B bis zur Zeit t

r(t): zeitliche Änderung von B bzw. A zur Zeit t

d.h.
$$p(t) = \int_{0}^{t} r(t) dt$$
 und $A = A_{0} + p(t)$
 $A_{n} = f_{n} A$
 $B = B_{0} - p(t)$

c: totale Konzentration von 60 Co im System z: Konzentration [60 CoOx ${}^{3-}_{3}$]

$$c-z:\sum_{n=0}^{3} [{}^{60}\mathrm{CoOx}_{n}^{2-2n}]$$

 $R_n(t)$: Geschwindigkeiten der Austauschreaktionen im allgemeinen Schema nebeneinander laufender Reaktionen:

$$\operatorname{CoOx}_{3}^{3-} + \begin{cases} 60 \operatorname{Co} & \xrightarrow{R_{0}(t)} & \operatorname{Co}^{2+} \\ 60 \operatorname{CoOx} & \xrightarrow{R_{1}(t)} & \operatorname{CoOx} \\ 60 \operatorname{CoOx}_{2}^{2-} & \xrightarrow{R_{2}(t)} & \operatorname{CoOx}_{2}^{2-} \\ 60 \operatorname{CoOx}_{3}^{4-} & \xrightarrow{R_{3}(t)} & \operatorname{CoOx}_{3}^{4-} \end{cases} + {}^{60} \operatorname{CoOx}_{3}^{3-} \end{cases}$$

Weil die spezifischen Aktivitäten aller individuellen Co^{II}-Spezies gleich gross sind, ergibt sich für die Zeitabhängigkeit von z (22):

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \sum_{n=0}^{3} R_{n}(t) \frac{c-z}{A_{0}+p(t)} - \left[\sum_{n=0}^{3} R_{n}(t)+r(t)\right] \frac{z}{B_{0}-p(t)}.$$
(22)

Berücksichtigt man ferner die Beziehungen

$$S_B = z/B; \ S_{B_0} = z_0/B_0; \ S_{\infty} = c/(A_0 + B_0),$$

so erhält man nach Integration und Umformen (23):

$$\ln (1 - F_B) = -\int_0^t \frac{(A_0 + B_0) R(t)}{(A_0 + p(t)) (B_0 - p(t))}$$
(23)
$$R(t) = \sum_{n=0}^3 R_n(t).$$

³²) Durch die Trennmethode induzierter Austausch konnte nach dieser Methode praktisch ausgeschaltet werden.

³³⁾ C. P. LUEHR, G. E. CHALLENGER & B. J. MASTERS, J. Amer. chem. Soc. 78, 1314 (1956).

Für den speziellen Fall bimolekularer Austauschreaktionen setzt man

$$R_n(t) = k_n f_n A B$$

und erhält bei Einsetzen in (23) mit der durch

$$k_b^{cx} = \sum_{n=0}^{3} k_n f_n$$
 (24)

definierten Bruttoaustauschkonstanten k_b^{ex} :

$$\ln (1 - F_B) = -k_b^{cx} (A_0 + B_0) t$$
(25)

Die experimentell verifizierbare Geschwindigkeitskonstante k_b^{ex} ist natürlich nur bei hinreichender Konstanz der Koeffizienten f_p sinnvoll.

2.3. Experimentelle Resultate. Tabelle 7 gibt die Daten für einige Versuche bei 32,5° und in Tab. 8 sind die Mittelwerte von 25 Einzelversuchen bei verschiedenen Temperaturen zusammengefasst. Die Abhängigkeit (25) kann verifiziert werden und ist für einige Beispiele in Fig. 9 angegeben.

Fig. 9. Geschwindigkeitsgesetz (25) für den Elektronaustausch $CoOx_3^3 + {}^{60}CoOx_2^{2-} \rightleftharpoons {}^{60}CoOx_3^3 + CoOx_3^{2-} + CoOx_2^{2-} . 25^{\circ}C$ (Tab. 7 und Zit. ¹).

I: $B_0 = 4,88 \cdot 10^{-2}$; $A_0 = 3,86 \cdot 10^{-3}$ [Ox]_{tot} = 0,150; $\mu = 1,2$ (Na₂SO₄). II: $B_0 = 5 \cdot 10^{-2}$; $A_0 = 5 \cdot 10^{-3}$; [Ox]_{tot} = 0,200; $\mu = 1,5$ (KNO₃). III: $B_0 = 5 \cdot 10^{-3}$; $A_0 = 5 \cdot 10^{-3}$; [Ox]_{tot} = 0,500.

°C	B ₀	A_0	[Ox] _{tot}	k_b^{ex} M^{-1} h ⁻¹
32,5	$5,0 \cdot 10^{-2}$	5,0 · 10-3	0,20	5,8 · 10-2
	$3,0 \cdot 10^{-2}$	$2,0 \cdot 10^{-3}$	0,20	5,7
	$3,0 \cdot 10^{-2}$	$5,0 \cdot 10^{-3}$	0,20	6,0
	$5,0 \cdot 10^{-2}$	$5,0 \cdot 10^{-3}$	0,35	3,0
	$5,0 \cdot 10^{-2}$	$5,0 \cdot 10^{-3}$	0,50	2,0
40	$5,0 \cdot 10^{-2}$	5,0 · 10 ⁻³	0,20	$13 \pm 1 \cdot 10^{-2}$ *)

Tabelle 7. Austauschexperimente in gepuffertem System: pcH = 4,6Geschwindigkeitskonstante k_b^{ex} nach Gesetz (25). $\mu = 1,5$ (KNO₃)

*) Mittelwert aus fünf unabhängigen Experimenten.

	U		
	x] _{tot} 0,20	0,35	0,5
Temp. °C			
25	1,6 · 10-2	0,9 · 10 ⁻²	$0,7 \cdot 10^{-2}$
32,5	5,8 · 10-2	$3,0 \cdot 10^{-2}$	$2,0 \cdot 10^{-2}$
40	13 · 10-2	7,5 · 10−²	4,5 · 10−2

Tabelle 8. Mittelwerte für k_b^{ex} bei verschiedenen Temperaturen und Oxalatkonzentrationen k_k^{ex} in M^{-1} h⁻¹

Die Variation von k_b^{ex} mit der Konzentration $[Ox]_{tot}$ ist in Fig. 10 dargestellt. Die ausgezogenen Kurven sind mit Hilfe der Stabilitätskonstanten von FOMIN & SINKOVSKII²⁹) berechnet worden unter der Annahme $k_1 = k_3 = 0$ und geben die gefundene Abhängigkeit besser wieder als der Wert \varkappa_3 ca. 10, den wir früher in einem Medium der ionalen Stärke 1,2 bei tieferer Oxalatkonzentration aus Löslichkeitsmessungen bestimmt haben²). Die Koeffizienten f_2 und f_3 sind in Fig. 10 eingetragen und aus dem Vergleich mit der Beziehung (24) ersieht man, dass der Komplex CoOx²₂- der kinetisch wichtige Austauschpartner ist. Man hat denselben Wert für \varkappa_3 bei allen drei Temperaturen verwendet, weil eine geringe Änderung in diesem Intervall vorausgesetzt werden darf²⁸).

Es ist somit sinnvoll, der Konstanten k_b^{ex} bzw. k_2 eine Aktivierungsenergie zuzuordnen, und man findet als wesentlichste Aussage $E_A < 30$ kcal/Mol, nämlich 25 ± 3 Kcal/Mol (Fig. 11).

Fig. 10. Abhängigkeit der Bruttoaustauschkonstanten k_b^{ex} von der Temperatur und der Oxalatkonzentration $[Ox]_{tot}$.

Ausgezogene Kurven berechnet nach $k_b^{ex} = f_2 \cdot k_2$; $\varkappa_3 = 30$ (oberer Teil der Fig.). Berechnete Koeffizienten f_2 und f_3 nach Werten aus Zit.²⁹); $\varkappa_3 = 10$, bzw. 30 (unterer Teil der Fig.)

Fig. 11. Temperaturabhängigkeit der Bruttoaustauschkonstanten k_b^{ex} (siehe Tab. 8)

2.4. Diskussion der Resultate. Es sind in der Literatur³⁴) viele Austauschprozesse beschrieben, in denen die Partner sich nur um ein Elektron unterscheiden und damit die Möglichkeit zur Bildung eines günstigen, symmetrischen «transition state» IV ohne weiteres erkennen lassen. Zu diesen gehören z. B. Metallaquo-Ionen und Hexacyanokomplexe.

$$ML_{6}^{\nu} + ML_{6}^{\nu-1} \longrightarrow [(ML_{6})^{\nu-1/2} (ML_{6}^{\nu-1/2})]^{\pm}$$

HUSH³⁵) hat für einige solche Fälle die Parameter ΔG^{\pm} , ΔH^{\pm} und ΔS^{\pm} nach einem durchsichtigen Modell unter der Voraussetzung eines adiabatischen Elektronübergangs berechnet, und seine Resultate sind in vernünftiger Übereinstimmung mit dem Experiment. ORGEL³⁶) hat erstmals auf die wesentlichen qualitativen Faktoren hingewiesen, welche unsere Austauschreaktion betreffen: Beim Übergang des Co¹¹¹ mit der 3*d*-Konfiguration γ_5^6 in Co¹¹ mit $\gamma_5^5 \gamma_3^2$ ist der Konfigurationswechsel nur dann mit minimaler Aktivierungsenergie zu vollziehen, wenn er über einen expandierten und einen komprimierten Komplex von Co¹¹¹ bzw. Co¹¹ verläuft. Die offene Form des CoOx₃³⁻ ist nach den besprochenen Resultaten (Abschnitt 1) leichter zu expandieren, und ein symmetrisch gebauter «transition state» V³⁷) würde die Substitution von Wasser an CoOx₂²⁻ voraussetzen.

Unsere Resultate können nicht mit der von andere Autoren³) gegebenen Interpretation von Zerfallsreaktion und Elektronaustausch in Übereinstimmung gebracht werden. Der Mechanismus (4), (5) über ein Radikal-Ion $C_2O_4^-$ ist durch drei Kon-

³⁴) z. B. D. R. STRANKS in «Modern Coordination Chemistry», Ed. LEWIS & WILKINS, Interscience 1960, Kap. 2.

³⁵) N. S. HUSH, Trans. Farad. Soc. 57, 557 (1961).

³⁶) L. E. ORGEL, «An Introduction to Transition Metal Chemistry», Methuen 1960, Kap. 7. J. HALPERN & L. E. ORGEL, Discuss. Farad. Soc. 29, 7 (1960).

³⁷) Der in dieser Weise formulierte Zustand V kann noch verschiedene eigentliche Transfermechanismen repräsentieren, siehe J. HALPERN & L. E. ORGEL, Discuss. Farad. Soc. 29, 32 (1960).

stanten k'_1 , k'_2 , k'_3 gekennzeichnet, und die Kombination von Zerfalls- und Austauschdaten würde das Verhältnis k'_2/k'_3 liefern. Unsere Daten liefern für diesen Quotienten ca. 6 und damit einen Wert, der sich im Zerfall in einer ausserhalb der Fehlergrenzen liegenden Abweichung von der beobachteten ersten Ordnung äussern müsste.

2.5. Katalysierte Elektronübertragung. – 2.5.1. Experimentelle Daten. Eine kleine Konzentration an Ce^{III} führt zu einer Beschleunigung der Austauschreaktion (2), wobei das empirische Gesetz weiterhin die Form (25) zeigt; Tab. 9 und Fig. 12 orientieren über Versuchsbedingungen und Resultate.

Temp.	[()v].	[(a], .	k_b^{ex} $M^{-1} h^{-1}$	k_b^{ex} aus
			<i>M</i> – H –	1aD. 0
25	0,20	0,49 · 10-4	$11 \cdot 10^{-2}$	$1,6 \cdot 10^{-2}$
	0,50	0,98 · 10-4	$8,2 \cdot 10^{-2}$	0,7 · 10-2
32,5	0,20	0,26 · 10-4	$10 \cdot 10^{-2}$	
	0,20	$0,50 \cdot 10^{-4}$	$17 \cdot 10^{-2}$	$5,8 \cdot 10^{-2}$
	0,20	$0,50 \cdot 10^{-4}$	$18 \cdot 10^{-2}$	
	0,20	$1,06 \cdot 10^{-4}$	$39 \cdot 10^{-2}$	
	0,20	$1,50 \cdot 10^{-4}$	$50 \cdot 10^{-2}$	
	0,50	$1,06 \cdot 10^{-4}$	$17 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$
	0,50	2,2 · 10-4	$38 \cdot 10^{-2}$	
40	0,20	$0,53 \cdot 10^{-4}$	$29 \cdot 10^{-2}$	$13 \cdot 10^{-2}$
	0,35	1,06 · 10-4	$48 \cdot 10^{-2}$	
	0,50	$1,06 \cdot 10^{-4}$	$37 \cdot 10^{-2}$	4,5 · 10-2

Tabelle 9. Katalysierte Elektronenübertragung. Bruttokonstante k_b^{ex} nach Gl. (25) $B_0 = 5,0 \cdot 10^{-2}$; $A_0 = 5,0 \cdot 10^{-3}$; $\mu = 1,5$ (KNO₃)

Fig. 12. Geschwindigkeitsgesetz für die Cer-katalysierte Austauschreaktion (siehe Gl. (25) und (30, 31), sowie Tab. 9) 32,5°

Im Oxalatüberschuss liegt Ce^{III} als CeOx₂⁻ und CeOx₃³⁻ vor und die dritte individuelle Stabilitätskonstante \varkappa_3 beträgt noch etwa 5³⁸), d. h. die Konzentrationen beider Komplexe sind von derselben Grössenordnung. Der thermische Zerfall wird durch die Cerkomplexe nicht beeinflusst. Man findet für den Austausch eine abnehmende katalytische Wirkung mit zunehmender Konzentration $[Ox]_{tot}$ und eine geringere Temperaturabhängigkeit von k_b^{ex} gegenüber dem unkatalysierten Fall.

³⁸) C. E. CROUTHAMEL & D. S. MARTIN JR., J. Amer. chem. Soc. 73, 569 (1951).

Als naheliegendsten Mechanismus der katalytischen Wirkung hat man eine kombinierte Wirkung von Ce^{III} und Ce^{IV} nach (26) zu betrachten:

$$\operatorname{CoOx}_{3}^{3-} + \operatorname{CeOx}_{n}^{3-2n} \xrightarrow{\sigma_{2}} \operatorname{CoOx}_{2}^{2-} + \operatorname{CeOx}_{n}^{4-2n}$$
 (26)

 σ_2, σ_3 : Geschwindigkeitskonstanten

Man kennt keine stabilen Oxalatokomplexe des Ce^{IV}; die Redoxpotentiale Co^{III}/Co^{II} und Ce^{IV}/Ce^{III} betragen z. B. in 3 M HNO₃ (25°) 1,84 V resp. 1,62 V³⁹). Die Oxalatokomplexbildung muss das erste Potential mehr herabsetzen als das zweite. ADAMSON³) hat die Rückreaktion in (26) zu einer neuen Darstellungsmethode von {K₃CoOx₃} aq. verwendet, und vermutlich ist $\sigma_3 > \sigma_2$.

2.5.2. Geschwindigkeitsgesetz.

Es ist illustrativ, für folgende Voraussetzungen das modifizierte Austauschgesetz abzuleiten : a) es existiert nur ein Komplex des Ce^{IV} , z. B. $CeOx_3^{2-}$

b) das Gleichgewicht (26) stellt sich rasch ein, d.h. es gelte

$$\varrho_+(t) = \varrho_-(t) = \varrho(t),$$

wo $\rho(t)$ der Geschwindigkeit R(t) im unkatalysierten Fall, d. h. dem zeitlichen Umsatz der Hin- und Rückreaktion in (26) entspricht.

Man hat die stöchiometrischen Beziehungen (27, 28):

$$[Ce]_{tot} = [Ce^{III}]_{tot} + [Ce^{IV}]_{tot}$$
⁽²⁷⁾

$$[\operatorname{Ce^{III}}]_{tot} = (g_2 + g_3) [\operatorname{Ce^{III}}]_{tot}.$$
(28)

Die Koeffizienten g_2 , g_3 entsprechen den f_n (siehe 2.2). Man hat nun in (22) an Stelle von R(t) die Summe

$$R'(t) = R(t) + \varrho(t)$$

zu setzen, und Voraussetzung b) liefert (29):

$$\varrho(t) = (B_0 - p(t)) g_2 \cdot [\operatorname{Ce}^{\mathrm{III}}]_{tot} \cdot \sigma_2
= (A_0 + p(t)) f_2 \cdot [\operatorname{Ce}^{\mathrm{IV}}] \cdot \sigma_3.$$
(29)

$$= (22_0 + p(t)) f_2 \quad [00] \quad [0]_3.$$

Die Resultate sollen für zwei Grenzfälle des Koeffizienten $\mathbf{v} = g_2 \cdot \sigma_2 | f_2 \cdot \sigma_3$ angegeben werden:

$$\mathbf{v} = 1: \ln(1 - F_B) = - \left\{ f_2 k_2 + \frac{g_2 \cdot [Ce]_{tot} \cdot \sigma_2}{(A_0 + B_0)} \right\} \langle A_0 + B_0 \rangle t$$
(30)

$$\nu \ll 1: \ln(1 - F_B) = -\left\{ f_2 k_2 + \frac{g_2 \cdot [Ce]_{tot} \cdot \sigma_2}{A_0} \right\} (A_0 + B_0) t$$
(31)

Innerhalb dieser Voraussetzungen kann also die nur indirekt messbare Konstante σ_2 bis auf den Faktor $A_0/A_0 + B_0$ bestimmt werden.

Aus den Angaben der Tab. 9 folgt:

a) k_b^{ex} zeigt approximativ lineare Abhängigkeit mit [Ce]_{tot} (siehe Fig. 13).

b) k_b^{ex} nimmt ab mit zunehmender Konzentration $[Ox]_{tot}$, d. h. mit abnehmendem Koeffizienten g_2 .

c) Unter der Annahme $g_2 = 0.5$ findet man für σ_2 :

$$10^{-2} < \sigma_2 < 10^{-1} M^{-1} sec^{-1}$$

gegenüber

$$k_2: 5 \cdot 10^{-5} M^{-1} \text{ sec}^{-1}$$
,

d. h. Ce^{III} wird von CoOx $_{a}^{3-}$ bedeutend schneller oxydiert als CoOx $_{a}^{2-}$.

³⁹) G. F. SMITH & C. A. GETZ, Analyt. Chemistry 10, 569 (1951).

1882

Fig. 13. Abhängigkeit der Bruttokonstanten k_b^{ex} von der Konzentration $[Ce]_{tot}$. 32,5°C (siehe Tab. 9).

d) In Unkenntnis der genauen Koeffizienten g_2 und g_3 sowie des Quotienten ν soll die Temperaturabhängigkeit von σ_2 für die Annahmen

$$g_2 = 0.5 \text{ für } [Ox]_{tot} = 0.2 \text{ M}$$
$$g_2 = 0.3 \text{ für } [Ox]_{tot} = 0.5 \text{ M}$$
$$: \text{ Mittelwert für } \gamma = 1 \text{ und } \nu \ll 1$$

angegeben werden.

 σ_2

Man findet:

[O x] _{tot}	Temp. °C	$\log A$	$E_A \ m kcal/Mol$	⊿S≠ cal. Grad ⁻¹ Mol ⁻¹
0,20	25-40	2	5	- 50
0,50	25-40	6	11	- 30

2.5.3. Diskussion. Die Katalyse durch Cer führt offensichtlich über einen Reaktionsweg niedriger Aktivierungsenergie und niedriger Aktivierungsentropie. Es ist interessant, dass für den Elektronaustausch der Aquo-Ionen von Ce^{IV} die Parameter $E_A = 7.7$ kcal/Mol und $\Delta S^{\pm} = -40 E$ Einh. gefunden worden sind ⁴⁰), welche HUSH³⁵) innerhalb seines Modells auf 10% genau berechnet hat. Die Reorganisation der Solvatsphäre ergibt im Modell den wichtigsten Term und bedingt die stark negative Aktivierungsentropie; die Expansion und Kompression der Aquokomplexe hingegen trägt nur ca. 3 kcal/Mol an die Aktivierungsenthalpie bei. Für einen hypothetischen Übergangszustand der Art V, aber mit ungleichen Zentren Co und Ce, würde dasselbe Modell eine relativ hohe Ladung für Ce (> + 3,5) ergeben, so dass daraus ein grosser negativer Beitrag an die Aktivierungsentropie resultieren müsste. Entsprechend müsste Co eine Ladung unterhalb + 2,5 zukommen, so dass eigentlich eine höhere Aktivierungsenergie erwartet werden könnte, wenn nicht die beiden Zentren eine erhebliche Wechselwirkung eingehen⁴¹). Man wird einen Reaktionsweg über das Radikal-Ion C₂O₄- ausschliessen. Der Zerfall selbst bleibt ja unbeeinflusst und das Radikal-Ion müsste durch den Prozess

$$CoOx_3^3$$
 \longrightarrow $CoOx_2^2$ + $C_2O_4^-$

⁴⁰⁾ O. GRYDER & O. DODSON, J. Amer. chem. Soc. 73, 2890 (1951).

⁴¹) HUSH³⁵), setzt eine Wechselwirkung voraus, die adiabatischen Elektrontransfer ermöglicht, ohne in der experimentellen Aktivierungsenergie ins Gewicht zu fallen («Outer sphere electron transfer reactions»).

erzeugt werden, der praktisch für die hohe Aktivierungsenergie des thermischen Zerfalls verantwortlich gemacht werden müsste. Im katalytischen Mechanismus wäre dies weiterhin der Schritt mit der grössten Aktivierungsenergie (ca. 30 kcal/Mol). Die gefundene experimentelle Temperaturabhängigkeit widerspricht dieser Folgerung.

3. Diskussion der kinetischen Daten im Zusammenhang

In der Tab. 10 sind die Parameter A, E_A und $\varDelta S^{\pm}$ für alle untersuchten Redoxprozesse einschliesslich der Daten von BUSHRA & JOHNSON⁴) für die Racemisierung zusammengestellt. Für die ersten drei Prozesse ergeben sich die angegebenen Werte direkt aus dem Experiment, für die restlichen hat man Zahlenbeispiele für spezielle Annahmen berechnet, die auf Grund bekannter Grössen sinnvoll erscheinen.

Reaktion	log A	E_A Kcal/Mol	⊿S≠ cal.Grad ⁻¹ Mol ⁻¹ 32,5°C	Temperatur- bereich °C
Racemisierung	14,5	26,0	+ 6	19-38
thermischer Zerfall neutral	15,3	30,0	+ 9	2555
thermischer Zerfall $k_{\rm H}$ für				
$[H_3O^+] = 0.1 \text{ M}$	17,5 ^a)	30	+19	25-40
thermischer Zerfall $k_{\rm Fe}$ für				
[Fe ³⁺] = 0,1 м	19,3 ^a)	30	+28	25-40
Elektronenübertragung				
$Co_{II} + Co_{III}$	1 3, 5 ^b)	< 30	+ 1	2 5-4 0
Elektronenübertragung				
$Co^{III} + Ce^{III}$	2°)	5 °)	– 50°)	25-40
	6 d)	11 ^d)	- 30 ^d)	

Tabelle 10. Zusammenfassung kinetischer Daten für Redoxprozesse an $CoOx_3^{3-}$, aq.

^a) berechnet für $E_A = 30$ Kcal/Mol

b) $[Ox]_{tot} = 0,200; f_2 = 0,35;$ gepuffertes System: berechnet für $E_A = 25$ Kcal/Mol

c) Zahlenbeispiel für $[Ox]_{tot} = 0,200; g_2 = 0,5$ d) Zahlenbeispiel für $[Ox]_{tot} = 0,500; g_2 = 0,3$ Mittelwert von σ_2 für $\nu = 1$ und $\nu \ll 1$

Innerhalb der «steady state» Näherung kann man für das eingangs postulierte Schema (6.1) bis (6.4) ein Zerfallsgesetz herleiten, welches dem empirischen entspricht. Man erhält unter den Voraussetzungen

a) (6.1) ist vorgelagertes Gleichgewicht, d. h. $p_+, p_- \gg r_1$,

b) r₁ ≪ r₂, r₃, r₄,

die Beziehung (32):

$$-\frac{\mathrm{d}B}{\mathrm{d}t} = 2 \frac{r_3}{r_2 + r_3} \cdot \frac{K_0}{1 + K_0} \cdot r_1 \cdot B.$$
(32)

Nimmt man an, die Temperaturabhängigkeit des ersten und zweiten Quotienten sei klein gegenüber derjenigen von r_1 , so erhält E_A eine definierte Bedeutung. Der hohe Wert 30 Kcal/Mol erklärt sich aus der speziellen Konfigurationsänderung $\gamma_5^6 \rightarrow \gamma_5^5 \gamma_3^2$, welche verlangt, dass die Expansion des Komplexes die Ligandfeldstabilisierung herab- und die interelektronische Repulsion der 3d-Elektronen heraufsetzt, so dass Co^{III} in einen angeregten Zustand mit «high spin» Konfiguration übergehen kann. Dieser Übergang wird durch zunehmende Substitution von Oxalat

durch Wasser erleichtert, wie die Halbwertszeiten der Zerfallsreaktionen von $CoOx_3^{8-}$, $CoOx_2(H_2O)_2^{-}$, $CoOx(H_2O)_5^{+}$ anzeigen. Diese Komplexe liefern beim Redoxzerfall alle Co^{II} und CO₂ und die Halbwertszeiten sind bei Raumtemperatur von der Grössenordnung Wochen, Stunden⁶) und Sekunden⁴²). Aus diesem Grunde ist es sinnvoll, die offene Form als Voraussetzung für den Zerfall in wässeriger Lösung zu postulieren. Der Frequenzfaktor A kann ohne spezielle Annahmen betreffend die ersten zwei Quotienten in (32) keine einfache Bedeutung erhalten. Nach MASON¹²) sollte K_0 von der Grössenordnung Eins sein, und wahrscheinlich weicht auch der erste nicht weit davon ab. Aus $A > 10^{+18}$ s⁻¹ erhält man den Hinweis, dass die Reaktion (6.2) als ein monomolekularer Schritt betrachtet werden darf und A durch die Vibrationseigenschaften des Komplexes bzw. des koordinierten Oxalates bestimmt wird⁴³). Die Säure- und Metall-Katalyse wären konsequenterweise auf die mit der Protonierung bzw. der Komplexbildung der negativen Gruppe verbundene positive Entropie zurückzuführen. Der Faktor A für die Austauschreaktion (6.6) ist nur etwa auf den Faktor $10^{\pm 2}$ anzugeben, aber immer noch von einer Grössenordnung, wie er für Austauschreaktionen gefunden wird, in denen die chemischen Eigenschaften der Partner einen binuklearen Zwischenkomplex nahe legen. Die experimentellen Daten⁴⁴) für Elektronaustausch unter Partnern der Art $M_{aq}^{\nu+}$; $MX_{aq}^{\nu-\mu}$ zeigen, dass bei konstanten Ladungen μ die Aktivierungsentropie für jene Liganden $X^{\mu-}$ am grössten wird, die zur Bildung eines binuklearen Komplexes am geeignetsten erscheinen, so z. B. $X^- = OH^-$. Zusammen mit den verschiedenen unabhängigen Hinweisen gegen die Existenz des Radikal-Ions C2O4 im untersuchten System hat man also mehrere Gründe, einen Zwischenzustand der Art V zu postulieren. Die Induktionen aus experimentellen Daten führen somit allgemein zu einer Reihe von Problemen, die nur über bestimmte Modelle theoretisch weiter abgeklärt werden könnten. Dies trifft ganz speziell auf die relativ niedrige Aktivierungsenergie des Cer-katalysierten Austauschs zu, welche das Problem der Wechselwirkung zwischen Co^{III} und Ce^{III} über eine Oxalatbrücke hinweg aufwirft. Schliesslich gewinnt man aus den besprochenen Daten eine Anregung zum Mechanismus des Konfigurationswechsels, der konsequenterweise aus der postulierten Zwischenstufe III [CoOx₂(Ox⁻)...]³⁻ folgen müsste, weil Konfigurationsänderungen an Co^{II}-Komplexen mit «high spin» Konfiguration rasch ablaufen. Die Parameter A und E_A sind nur wenig kleiner als jene des thermischen Zerfalls, und der Konfigurationswechsel muss deshalb als ein reversibler «innerer» Redoxprozess zwischen Zentral-Ion und Liganden aufgefasst werden.

Experimenteller Teil

1. Thermische Zersetzung von $CoOx_3^{3-}$. – { $K_3CoOx_3, 3, 5H_2O$ } wurde nach der Methode von SÖRENSEN⁴⁵) hergestellt. Zur Reinigung wurde das Rohprodukt fein pulverisiert, bei ca. 40° rasch gelöst, die Lösung filtriert und sofort mit Eis gekühlt. Die optische Konzentrationsbestimmung in wässeriger Lösung mit den von COPESTAKE & URI⁵) angegebenen Extinktionskoeffizienten

⁴²) Als Mass für die Zerfallsgeschwindigkeit wurden Angaben über die Oxydationsgeschwindigkeit von Oxalsäure durch Co^{III} in starker Perchlorsäure verwendet (D. G. HOARE, Thesis, Oxford 1961; Privatmitteilung J. S. LITTLER).

⁴³⁾ Siehe auch B. G. GOWENLOCK, Quart. Rev. 14, 133 (1960).

⁴⁴⁾ Siehe z.B. Zit. 84).

⁴⁵⁾ Inorg. Synth. 1, 37 (1939).

war in Übereinstimmung mit komplexometrischen und jodometrischen Bestimmungen von Kobalt, sowie permanganometrischer Titration von Oxalat. FG ber. 503,4, gef. 502 \pm 2.

Die Hydrate der Metallperchlorate wurden ausgehend von Oxiden, Hydroxiden oder Carbonaten in reiner kristalliner Form hergestellt. Den Lösungen hat man eine kontrollierte Menge Perchlorsäure zugesetzt.

Alle übrigen Substanzen waren reinste Produkte (BDH «ANALAR», MERCK's reinste Reagenzien).

Spektrophotometrische Messungen: Zwei Lösungen gleichen Gehaltes an Elektrolyt, Säure und Metallperchlorat wurden in Masskolben in einem Thermostaten (COLORA und LAUDA Ultrathermostaten) auf die gewünschte Temperatur gebracht. Zuletzt hat man das Komplexsalz der einen Lösung zugefügt und zur Marke aufgefüllt. Der allseitig abgeschlossene Thermostatenraum schützte die Lösungen vor Lichtzutritt. Die Messproben wurden direkt aus dem thermostatisierten Gefäss in Quarzküvetten passender Schichtdicke (0,2 bis 5,0 cm) transferiert. Innerhalb einer Halbwertszeit des Zerfalls trat keine Niederschlagsbildung auf; bei längerer Versuchsdauer fielen in starken Metallperchloratlösungen die betreffenden Oxalate aus.

Die optische Dichte wurde bei den Maxima 425 und 606 m μ des CoOx³₃- gemessen. Das Verhältnis der beiden Werte liefert eine Kontrolle über Änderungen im Spektrum auf Grund der verschiedenen Absorption der Metalloxalate gegenüber den Aquo-Ionen.

Bei genügend grossen Halbwertszeiten wurden die Messungen mit dem Einstrahlgerät (BECKMAN DU) durchgeführt, bei raschem Zerfall wurde das registrierende Spektralphotometer (CF 4N OPTICA) verwendet. Man hat dann die Lösungen im Küvettengehäuse thermostatisiert und mit einer Injektionsspritze ein kleines Volumen einer konz. Lösung von K_3COOx_3 hinzugefügt.

2. Elektronaustausch.⁴⁶) – Kaliumnitrat des Handels wurde mehrfach aus saurer Lösung umkristallisiert. Bei Verwendung des reinsten Handelsproduktes traten Störungen auf, die sich in einem scheinbaren Austausch unmittelbar nach dem Mischen der Komponenten anzeigten. (Kaliumnitrit vermag den Austausch zu beschleunigen.)

⁶⁰Co stand als hochverdünnte Nitratlösung zur Verfügung und wurde mit inaktiver Lösung stark verdünnt. Die für einzelne Versuche abgemessene Menge wurde mit konz. HCl eingedampft, um durch langes Stehen gebildetes H_2O_2 zu zerstören. – K_2Ox und KNO_3 wurden direkt eingewogen, die übrigen Komponenten aus Stammlösungen einpipettiert.

Die Reaktionslösung wurde in einen gegen Licht abgeschlossenen Thermostaten gebracht, und zur Verminderung von Lichtzutritt⁴⁷) wurden alle weiteren bei der Trennung verwendeten Gefässe mit Aluminiumfolie abgedeckt. Die entnommenen Proben (0,5 ml) wurden vorerst auf 4 bis 5 ml verdünnt. Darnach wurde die berechnete Menge Kobaltnitrat zur Fällung von Oxalat zugegeben, ferner auch die berechnete Menge Natriumacetat, um bei der Fällung aus HOx- freigesetzte Säure auf pH ca. 5 abzupuffern. Nach Zentrifugieren wurde noch filtriert, um Verunreinigungen durch feine mitgerissene {CoOx}-Teilchen auszuschliessen. Das Filtrat wurde nun auf eine kleine Ionentauschersäule von ca. 5 mm Durchmesser und ca. 4 cm Länge transferiert (Dowex-1 in Chloridform). Die Durchflussgeschwindigkeit wurde durch eine kapillare Ausflussöffnung einreguliert. Das Komplex-Ion CoOx3- bleibt auf einer schmalen Zone haften, die intensiv grün gefärbt ist und scharfe Grenzen aufweist. Das in Lösung gebliebene CoOx läuft nicht quantitativ durch und wurde durch Spülen mit 4 ml einer $0,1 \text{ M CoCl}_2$ -Lösung, welche überschüssiges KCl enthielt (0,5 M), ausgewaschen. Nach Auswaschen mit 2 ml Wasser liess sich im Eluat kein 60Co mehr nachweisen. Das grüne Komplex-Ion wurde mit einer Lösung (1 ml) von 0,1 M FeCl₂ und 0,5 M Hydraziniumchlorid auf dem Harz zerstört und das Eluat wurde direkt in einem auf 1,5 ml geeichten Röhrchen aufgefangen, welches in den Bohrlochkristall des Szintillationszählers passte. Zur Kontrolle wurde noch mit einer 0,5M Lösung von K₃CoOx₃ nachgespült und das Eluat ebenfalls der Aktivitätsmessung unterworfen. Das Harz enthielt danach kein 60Co mehr, und im letzten Eluat betrug die Aktivität meist weniger als 1% aller Co^{III}-Fraktionen zusammen.

Die optimalen Apparateparameter für die Registrierung der γ -Strahlung des ⁶⁰Co hat man in einer systematischen Testreihe für die PHILIPS-Szintillationszählanlage ermittelt.

⁴⁶) Systematische Untersuchungen über die erwähnten Trennmethoden erfolgten im Rahmen kurzfristiger Diplomarbeiten von J. J. SALZMANN, A. SOMMERAUER & H. TSCHUDIN, ETH Zürich 1960. Herrn Dr. M. WIDMER sei für seine Hilfe bei der Ausarbeitung der Zählmethodik bestens gedankt.

⁴⁷) CoOx $_{3}^{3-}$ ist lichtempfindlich. Photochemie siehe Zit. ⁵).

Die von uns früher verwendete Trennmethode¹)²) über doppelte Fällung des {CoOx} und anschliessende Extraktion von Spuren Co^{II} mit Chloroformlösung von Oxychinolin ist mit etwas grösserem Nullaustausch verbunden. – Eine scheinbar äusserst praktische Methode der Trennung von Co^{III} und Co^{II} in Gegenwart der verwendeten Oxalatkonzentrationen mittels des Dowex-Chelating Resin A1 musste infolge katalytischer Wirkung der Harzphase, die schlecht reproduzierbar war, wieder aufgegeben werden.

In den Versuchen bei Gegenwart von Cer konnte die Trennmethode unverändert beibehalten werden; es zeigte sich sogar, dass die kleinen Cermengen die Kristallisationsgeschwindigkeit des CoOx günstig beeinflussten.

Die PHILIPS-Szintillationszählanlage wurde aus Mitteln des Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung angeschafft. – Herrn U. Wittorf danken wir für experimentelle Mithilfe. Im Rahmen kurzfristiger Diplomarbeiten haben die Herren A. Walser, M. Wohlwend, M. Buzzolini, R. Scartazzini, G. de Marchi, B. Glutz und E. Klopfenstein experimentell an Teilproblemen mitgearbeitet. – Herrn Prof. Dr. G. Schwarzen-Bach danken wir für sein Interesse an dieser Arbeit.

SUMMARY

The thermal decomposition of CoOx_3^{3-} has been investigated in neutral and acid solutions and in presence of the metal ions Li⁺, Mg²⁺, Cd²⁺, Be²⁺, Mn²⁺, Co²⁺, Zn²⁺, Ni²⁺, Cr³⁺, Al³⁺, Cu²⁺, Fe³⁺. Their catalytic influence increases in the series as listed, without being connected with appreciable changes in the activation energy which is also the same for decomposition in neutral and acid solution. In the electron exchange reaction between oxalate complexes of Co¹¹ and CoOx₃³⁻ the complex CoOx_2^{2-} is the only important species. The activation energy is slightly lower for the electron exchange than for the thermal decomposition. The exchange is catalysed by Cerium (III + IV). Mechanisms are postulated which connect all the reactions studied as well as the isomerization of CoOx_3^{3-} in aqueous solution, suggesting that the latter process has to be considered as a reversible oxidation of the ligand by Co^{III}. Several independent facts suggest that the free radical ion C₂O₄⁻ does not appear as an unstable intermediate in solution. The transition state of the exchange reaction is likely to involve a bridged binuclear species. All reactions described are intimately connected with the entrance of water into the first coordination shell of CoOx₃³⁻.

> Zürich, Laboratorium für Anorganische Chemie der Eidg. Technischen Hochschule

213. Kinetische Studie zur Aminolyse von «aktiven Estern» bei der Peptidsynthese

3. Mitteilung über chemische Struktur und UV.-Spektroskopie¹)

von K. Stich und H. G. Leemann

(7. VI. 63)

A. – Das grosse Interesse, das die Verwendung von aktiven Estern bei der Peptidsynthese in neuerer Zeit gefunden hat, veranlasste uns, die Kinetik der Aminolyse einer Reihe zum grössten Teil neuer Phenylester vergleichend zu untersuchen.

¹) 2. Mitt.: K. Stich & H. G. LEEMANN, Helv. 46, 1151 (1963).